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Good and Bad Examples of Explanations

(84 participants) :
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I The alarm is triggered by a burglary or an earthquake.
|
|
|

Conclusions & Future Work

° Finding accurate measures is
challenging, particularly for
explanations

° For future work, we plan to
investigate the pragmatic and
cognitive processes underlying

2. In a separate study, these explanations were rated on

a 7-point Likert scale, in terms of Informativeness and B1 | B2 B3| B4 ]SsB| MIRL]RI R BS |BRT] Inf |Clar.
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Clarity (97 participants, 250 explanations)

NLG Evaluation Methods

Sensors = Alarm = prevention or ALERT.
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° Human NLG Evaluation Metrics:
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© nformativeness ° The ExBAN corpus and this

o Clarity ° All metrics are reasonably good at capturing and evaluating the “Bad” study will inform the
o Automatic NLG Evaluation Metrics: examples of explanations development of NLG

° BLEURT (BRT) is more sensitive to Informativeness and Clarity as it lgorithms for NL lanati
o BLEU, ROUGE, METEOR, (BRT) s more sensitlv : Y agorithms or L. explanations
ExBAN Corpus captures both “Good” and “Bad” examples of explanations. from graphical representations.

BERTScore & BLEURT Scan the QR Code A larger study might be needed to show this empirically.



